Physics and Chemistry of the Fullerenes(English, Paperback, unknown)
Quick Overview
Product Price Comparison
In September 1985, in an attempt to simulate the chemistry in a carbon star, Harry Kroto, Bob Curl and Richard Smalley set up a mass spectrometry experiment to study the plasma produced by focusing a pulsed laser on solid graphite. Serendipitously, a dominant 720 amu mass peak corresponding to a C60 species was revealed in the time-of-flight mass spectrum of the resulting carbon clusters. It was proposed that this C60 cluster had the closed cage structure of a truncated icosahedron (a soccerball) and was named Buckminsterfullerene because geodesic dome concepts, pioneered by the architect Buckminster Fuller, played an important part in arriving at this solution. The signal for a C70 species (840 amu) , proposed to have the ellipsoidal shape of a rugbyball, was also prominent in the early experiments. Five years later, the seminal work of the Sussex! Rice collaboration was triumphantly confirmed as Wolfgang Krlitschmer and Donald Huffman succeeded in producing, and separating, bulk crystalline samples of fullerene material from arc-processed (in an inert gas atmosphere) carbon deposits. From then onwards, fullerene research continued, and still proceeds, at an exhilarating pace. The materials excited the imagination of many diverse classes of scientists, resulting in a truly interdisciplinary field. Many of our old, seemingly well-founded, preconceptions in carbon science had to be radically altered or totally abandoned, as a new round world of chemistry, physics and materials science began to unfold.